Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
STAR Protoc ; 4(2): 102323, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2311230

ABSTRACT

FlipGFP assay characterizes the intracellular drug target engagement to Mpro and PLpro and can be performed in the biosafety level 1/2 settings. Here, we provide the detailed protocol for the cell-based FlipGFP assay to identify and characterize SARS-CoV-2 Mpro and PLpro inhibitors. We describe steps for cell passage and seeding, transfection, addition of compounds, and their incubation and timing. We then detail the quantification of the fluorescence signal of the assay For complete details on the use and execution of this protocol, please refer to Ma et al.1.

2.
Acc Chem Res ; 56(2): 157-168, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2185419

ABSTRACT

SARS-CoV-2 is the etiological pathogen of the COVID-19 pandemic, which led to more than 6.5 million deaths since the beginning of the outbreak in December 2019. The unprecedented disruption of social life and public health caused by COVID-19 calls for fast-track development of diagnostic kits, vaccines, and antiviral drugs. Small molecule antivirals are essential complements of vaccines and can be used for the treatment of SARS-CoV-2 infections. Currently, there are three FDA-approved antiviral drugs, remdesivir, molnupiravir, and paxlovid. Given the moderate clinical efficacy of remdesivir and molnupiravir, the drug-drug interaction of paxlovid, and the emergence of SARS-CoV-2 variants with potential drug-resistant mutations, there is a pressing need for additional antivirals to combat current and future coronavirus outbreaks.In this Account, we describe our efforts in developing covalent and noncovalent main protease (Mpro) inhibitors and the identification of nirmatrelvir-resistant mutants. We initially discovered GC376, calpain inhibitors II and XII, and boceprevir as dual inhibitors of Mpro and host cathepsin L from a screening of a protease inhibitor library. Given the controversy of targeting cathepsin L, we subsequently shifted the focus to designing Mpro-specific inhibitors. Specifically, guided by the X-ray crystal structures of these initial hits, we designed noncovalent Mpro inhibitors such as Jun8-76-3R that are highly selective toward Mpro over host cathepsin L. Using the same scaffold, we also designed covalent Mpro inhibitors with novel cysteine reactive warheads containing di- and trihaloacetamides, which similarly had high target specificity. In parallel to our drug discovery efforts, we developed the cell-based FlipGFP Mpro assay to characterize the cellular target engagement of our rationally designed Mpro inhibitors. The FlipGFP assay was also applied to validate the structurally disparate Mpro inhibitors reported in the literature. Lastly, we introduce recent progress in identifying naturally occurring Mpro mutants that are resistant to nirmatrelvir from genome mining of the nsp5 sequences deposited in the GISAID database. Collectively, the covalent and noncovalent Mpro inhibitors and the nirmatrelvir-resistant hot spot residues from our studies provide insightful guidance for future work aimed at developing orally bioavailable Mpro inhibitors that do not have overlapping resistance profile with nirmatrelvir.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cathepsin L , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Drug Design
3.
Lab Chip ; 22(19): 3744-3754, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2016865

ABSTRACT

The persistence of the global COVID-19 pandemic caused by the SARS-CoV-2 virus has continued to emphasize the need for point-of-care (POC) diagnostic tests for viral diagnosis. The most widely used tests, lateral flow assays used in rapid antigen tests, and reverse-transcriptase real-time polymerase chain reaction (RT-PCR), have been instrumental in mitigating the impact of new waves of the pandemic, but fail to provide both sensitive and rapid readout to patients. Here, we present a portable lens-free imaging system coupled with a particle agglutination assay as a novel biosensor for SARS-CoV-2. This sensor images and quantifies individual microbeads undergoing agglutination through a combination of computational imaging and deep learning as a way to detect levels of SARS-CoV-2 in a complex sample. SARS-CoV-2 pseudovirus in solution is incubated with acetyl cholinesterase 2 (ACE2)-functionalized microbeads then loaded into an inexpensive imaging chip. The sample is imaged in a portable in-line lens-free holographic microscope and an image is reconstructed from a pixel superresolved hologram. Images are analyzed by a deep-learning algorithm that distinguishes microbead agglutination from cell debris and viral particle aggregates, and agglutination is quantified based on the network output. We propose an assay procedure using two images which results in the accurate determination of viral concentrations greater than the limit of detection (LOD) of 1.27 × 103 copies per mL, with a tested dynamic range of 3 orders of magnitude, without yet reaching the upper limit. This biosensor can be used for fast SARS-CoV-2 diagnosis in low-resource POC settings and has the potential to mitigate the spread of future waves of the pandemic.


Subject(s)
COVID-19 , Deep Learning , Agglutination , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , COVID-19 Testing , DNA-Directed RNA Polymerases , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2 , Sensitivity and Specificity
4.
J Med Chem ; 65(11): 7561-7580, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1873395

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. The approval of vaccines and small-molecule antivirals is vital in combating the pandemic. The viral polymerase inhibitors remdesivir and molnupiravir and the viral main protease inhibitor nirmatrelvir/ritonavir have been approved by the U.S. FDA. However, the emergence of variants of concern/interest calls for additional antivirals with novel mechanisms of action. The SARS-CoV-2 papain-like protease (PLpro) mediates the cleavage of viral polyprotein and modulates the host's innate immune response upon viral infection, rendering it a promising antiviral drug target. This Perspective highlights major achievements in structure-based design and high-throughput screening of SARS-CoV-2 PLpro inhibitors since the beginning of the pandemic. Encouraging progress includes the design of non-covalent PLpro inhibitors with favorable pharmacokinetic properties and the first-in-class covalent PLpro inhibitors. In addition, we offer our opinion on the knowledge gaps that need to be filled to advance PLpro inhibitors to the clinic.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases , Humans , Protease Inhibitors/pharmacology , SARS-CoV-2
5.
ACS Infect Dis ; 8(5): 1022-1030, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1783938

ABSTRACT

The global COVID-19 pandemic underscores the dire need for effective antivirals. Encouraging progress has been made in developing small-molecule inhibitors targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and main protease (Mpro). However, the development of papain-like protease (PLpro) inhibitors faces several obstacles. Nevertheless, PLpro represents a high-profile drug target given its multifaceted roles in viral replication. PLpro is involved in not only the cleavage of viral polyprotein but also the modulation of host immune response. In this study, we conducted a drug-repurposing screening of PLpro against the MedChemExpress bioactive compound library and identified three hits, EACC, KY-226, and tropifexor, as potent PLpro inhibitors with IC50 values ranging from 3.39 to 8.28 µM. The three hits showed dose-dependent binding to PLpro in the thermal shift assay. In addition, tropifexor inhibited the cellular PLpro activity in the FlipGFP assay with an IC50 of 10.6 µM. Gratifyingly, tropifexor showed antiviral activity against SARS-CoV-2 in Calu-3 cells at noncytotoxic concentrations. Overall, tropifexor represents a novel PLpro inhibitor that can be further developed as SARS-CoV-2 antivirals.


Subject(s)
Benzothiazoles , Coronavirus Papain-Like Proteases , Drug Repositioning , Isoxazoles , SARS-CoV-2 , Antiviral Agents/chemistry , Benzothiazoles/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Humans , Isoxazoles/pharmacology , Pandemics , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
7.
Bio Protoc ; 12(3): e4314, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1716345

ABSTRACT

Coronaviruses are important human pathogens, among which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. To combat the SARS-CoV-2 pandemic, there is a pressing need for antivirals, especially broad-spectrum antivirals that are active against all seven human coronaviruses (HCoVs). For this reason, we are interested in developing antiviral assays to expedite the drug discovery process. Here, we provide the detailed protocol for the cytopathic effect (CPE) assay and the plaque assay for human coronaviruses 229E (HCoV-229E), HCoV-OC43, and HCoV-NL63, to identify novel antivirals against HCoVs. Neutral red was used in the CPE assay, as it is relatively inexpensive and more sensitive than other reagents. Multiple parameters including multiplicity of infection, incubation time and temperature, and staining conditions have been optimized for CPE and plaque assays for HCoV-229E in MRC-5, Huh-7, and RD cell lines; HCoV-OC43 in RD, MRC-5, and BSC-1 cell lines, and HCoV-NL63 in Vero E6, Huh-7, MRC-5, and RD cell lines. Both CPE and plaque assays have been calibrated with the positive control compounds remdesivir and GC-376. Both CPE and plaque assays have high sensitivity, excellent reproducibility, and are cost-effective. The protocols described herein can be used as surrogate assays in the biosafety level 2 facility to identify entry inhibitors and protease inhibitors for SARS-CoV-2, as HCoV-NL63 also uses ACE2 as the receptor for cell entry, and the main proteases of HCoV-OC43 and SARS-CoV-2 are highly conserved. In addition, these assays can also be used as secondary assays to profile the broad-spectrum antiviral activity of existing SARS-CoV-2 drug candidates.

8.
J Med Virol ; 94(5): 2188-2200, 2022 05.
Article in English | MEDLINE | ID: covidwho-1648458

ABSTRACT

Brilacidin, a mimetic of host defense peptides (HDPs), is currently in Phase 2 clinical trial as an antibiotic drug candidate. A recent study reported that brilacidin has antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by inactivating the virus. In this study, we discovered an additional mechanism of action of brilacidin by targeting heparan sulfate proteoglycans (HSPGs) on the host cell surface. Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS-CoV-2 pseudovirus into multiple cell lines, and heparin, an HSPG mimetic, abolishes the inhibitory activity of brilacidin on SARS-CoV-2 pseudovirus cell entry. In addition, we found that brilacidin has broad-spectrum antiviral activity against multiple human coronaviruses (HCoVs) including HCoV-229E, HCoV-OC43, and HCoV-NL63. Mechanistic studies revealed that brilacidin has a dual antiviral mechanism of action including virucidal activity and binding to coronavirus attachment factor HSPGs on the host cell surface. Brilacidin partially loses its antiviral activity when heparin was included in the cell cultures, supporting the host-targeting mechanism. Drug combination therapy showed that brilacidin has a strong synergistic effect with remdesivir against HCoV-OC43 in cell culture. Taken together, this study provides appealing findings for the translational potential of brilacidin as a broad-spectrum antiviral for coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 229E, Human , Coronavirus OC43, Human , Antiviral Agents/pharmacology , Guanidines , Humans , Pyrimidines , SARS-CoV-2
9.
J Am Chem Soc ; 143(49): 20697-20709, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1550253

ABSTRACT

The main protease (Mpro) is a validated antiviral drug target of SARS-CoV-2. A number of Mpro inhibitors have now advanced to animal model study and human clinical trials. However, one issue yet to be addressed is the target selectivity over host proteases such as cathepsin L. In this study we describe the rational design of covalent SARS-CoV-2 Mpro inhibitors with novel cysteine reactive warheads including dichloroacetamide, dibromoacetamide, tribromoacetamide, 2-bromo-2,2-dichloroacetamide, and 2-chloro-2,2-dibromoacetamide. The promising lead candidates Jun9-62-2R (dichloroacetamide) and Jun9-88-6R (tribromoacetamide) had not only potent enzymatic inhibition and antiviral activity but also significantly improved target specificity over caplain and cathepsins. Compared to GC-376, these new compounds did not inhibit the host cysteine proteases including calpain I, cathepsin B, cathepsin K, cathepsin L, and caspase-3. To the best of our knowledge, they are among the most selective covalent Mpro inhibitors reported thus far. The cocrystal structures of SARS-CoV-2 Mpro with Jun9-62-2R and Jun9-57-3R reaffirmed our design hypothesis, showing that both compounds form a covalent adduct with the catalytic C145. Overall, these novel compounds represent valuable chemical probes for target validation and drug candidates for further development as SARS-CoV-2 antivirals.


Subject(s)
Acetamides/pharmacology , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cathepsin L/antagonists & inhibitors , Drug Design , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Dynamics Simulation , Structure-Activity Relationship , Substrate Specificity
10.
ACS Cent Sci ; 7(7): 1245-1260, 2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1387139

ABSTRACT

The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. Through a fluorescence resonance energy transfer-based high-throughput screening and subsequent lead optimization, we identified several PLpro inhibitors including Jun9-72-2 and Jun9-75-4 with improved enzymatic inhibition and antiviral activity compared to GRL0617, which was reported as a SARS-CoV PLpro inhibitor. Significantly, we developed a cell-based FlipGFP assay that can be applied to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting. X-ray crystal structure of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to a more closed conformation. Molecular dynamics simulations showed that Jun9-72-2 and Jun9-75-4 engaged in more extensive interactions than GRL0617. Overall, the PLpro inhibitors identified in this study represent promising candidates for further development as SARS-CoV-2 antivirals, and the FlipGFP-PLpro assay is a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.

11.
ACS Pharmacol Transl Sci ; 4(4): 1408-1421, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1301140

ABSTRACT

SARS-CoV-2 main protease (Mpro) is a cysteine protease that mediates the cleavage of viral polyproteins and is a validated antiviral drug target. Mpro is highly conserved among all seven human coronaviruses, with certain Mpro inhibitors having broad-spectrum antiviral activity. In this study, we designed two hybrid inhibitors UAWJ9-36-1 and UAWJ9-36-3 based on the superimposed X-ray crystal structures of SARS-CoV-2 Mpro with GC-376, telaprevir, and boceprevir. Both UAWJ9-36-1 and UAWJ9-36-3 showed potent binding and enzymatic inhibition against the Mpro's from SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-NL63, HCoV-229E, and HCoV-HKU1. Cell-based Flip-GFP Mpro assay results show that UAWJ9-36-1 and UAWJ9-36-3 inhibited the intracellular protease activity of SARS-CoV-2 Mpro. In addition, UAWJ9-36-1 and UAWJ9-36-3 had potent antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E, with UAWJ9-36-3 being more potent than GC-376 in inhibiting SARS-CoV-2. Selectivity profiling revealed that UAWJ9-36-1 and UAWJ9-36-3 had an improved selectivity index over that of GC-376 against host cysteine proteases calpain I and cathepsin L, but not cathepsin K. The X-ray crystal structures of SARS-CoV-2 Mpro with UAWJ9-36-1 and UAWJ9-36-3 were both solved at 1.9 Å, which validated our design hypothesis. Overall, hybrid inhibitors UAWJ9-36-1 and UAWJ9-36-3 are promising candidates to be further developed as broad-spectrum coronavirus antivirals.

12.
J Med Chem ; 65(4): 2848-2865, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1199254

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II, and XII, with each containing a reactive warhead that covalently modifies the catalytic Cys145. Coupling structure-based drug design with the one-pot Ugi four-component reaction, we discovered one of the most potent noncovalent inhibitors, 23R (Jun8-76-3A) that is structurally distinct from the canonical Mpro inhibitor GC376. Significantly, 23R is highly selective compared with covalent inhibitors such as GC376, especially toward host proteases. The cocrystal structure of SARS-CoV-2 Mpro with 23R revealed a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study discovered 23R, one of the most potent and selective noncovalent SARS-CoV-2 Mpro inhibitors reported to date, and a novel binding pocket in Mpro that can be explored for inhibitor design.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology , Vero Cells , COVID-19 Drug Treatment
13.
ACS Infect Dis ; 7(3): 586-597, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1108883

ABSTRACT

As the COVID-19 pandemic continues to unfold, the morbidity and mortality are increasing daily. Effective treatment for SARS-CoV-2 is urgently needed. We recently discovered four SARS-CoV-2 main protease (Mpro) inhibitors including boceprevir, calpain inhibitors II and XII, and GC-376 with potent antiviral activity against infectious SARS-CoV-2 in cell culture. In this study, we further characterized the mechanism of action of these four compounds using the SARS-CoV-2 pseudovirus neutralization assay. It was found that GC-376 and calpain inhibitors II and XII have a dual mechanism of action by inhibiting both viral Mpro and host cathepsin L in Vero cells. To rule out the cell-type dependent effect, the antiviral activity of these four compounds against SARS-CoV-2 was also confirmed in type 2 transmembrane serine protease-expressing Caco-2 cells using the viral yield reduction assay. In addition, we found that these four compounds have broad-spectrum antiviral activity in inhibiting not only SARS-CoV-2 but also SARS-CoV, and MERS-CoV, as well as human coronaviruses (CoVs) 229E, OC43, and NL63. The mechanism of action is through targeting the viral Mpro, which was supported by the thermal shift-binding assay and enzymatic fluorescence resonance energy transfer assay. We further showed that these four compounds have additive antiviral effect when combined with remdesivir. Altogether, these results suggest that boceprevir, calpain inhibitors II and XII, and GC-376 might be promising starting points for further development against existing human coronaviruses as well as future emerging CoVs.


Subject(s)
Antiviral Agents/pharmacology , Carbonates/pharmacology , Glycoproteins/pharmacology , Leucine/pharmacology , Oligopeptides/pharmacology , Proline/analogs & derivatives , SARS-CoV-2/drug effects , Sulfonic Acids/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Caco-2 Cells , Cathepsin L/antagonists & inhibitors , Cell Line , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus NL63, Human/drug effects , Coronavirus OC43, Human/drug effects , Drug Combinations , HEK293 Cells , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Proline/pharmacology , Serine Endopeptidases/metabolism , Vero Cells , COVID-19 Drug Treatment
14.
Emerg Microbes Infect ; 10(1): 317-330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1075417

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that lacks effective therapeutic interventions. SARS-CoV-2 infects ACE2-expressing cells and gains cell entry through either direct plasma membrane fusion or endocytosis. Recent studies have shown that in addition to ACE2, heparan sulfate proteoglycans (HSPGs) also play an important role in SARS-CoV-2 cell attachment by serving as an attachment factor. Binding of viral spike protein to HSPGs leads to the enrichment of local concentration for the subsequent specific binding with ACE2. We therefore hypothesize that blocking the interactions between viral spike protein and the HSPGs will lead to inhibition of viral replication. In this study, we report our findings of the broad-spectrum antiviral activity and the mechanism of action of lactoferrin (LF) against multiple common human coronaviruses as well as SARS-CoV-2. Our study has shown that LF has broad-spectrum antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E in cell culture, and bovine lactoferrin (BLF) is more potent than human lactoferrin. Mechanistic studies revealed that BLF binds to HSPGs, thereby blocking viral attachment to the host cell. The antiviral activity of BLF can be antagonized by the HSPG mimetic heparin. Combination therapy experiment showed that the antiviral activity of LF is synergistic with remdesivir in cell culture. Molecular modelling suggests that the N-terminal positively charged region in BLF (residues 17-41) confers the binding to HSPGs. Overall, LF appears to be a promising drug candidate for COVID-19 that warrants further investigation.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Coronavirus/drug effects , Heparan Sulfate Proteoglycans/metabolism , Lactoferrin/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cattle , Cell Line , Cells, Cultured , Drug Delivery Systems , Drug Synergism , Heparin/metabolism , Humans , Microbial Sensitivity Tests , Virus Attachment/drug effects
15.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: covidwho-969082

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376 The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.


Subject(s)
Cathepsin L/chemistry , Coronavirus 3C Proteases/chemistry , Drug Design , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Animals , Caco-2 Cells , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Dogs , Humans , Kinetics , Madin Darby Canine Kidney Cells , Models, Chemical , Molecular Structure , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Domains , Vero Cells
16.
ACS Pharmacol Transl Sci ; 3(6): 1265-1277, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-840621

ABSTRACT

Among the drug targets being investigated for SARS-CoV-2, the viral main protease (Mpro) is one of the most extensively studied. Mpro is a cysteine protease that hydrolyzes the viral polyprotein at more than 11 sites. It is highly conserved and has a unique substrate preference for glutamine in the P1 position. Therefore, Mpro inhibitors are expected to have broad-spectrum antiviral activity and a high selectivity index. Structurally diverse compounds have been reported as Mpro inhibitors. In this study, we investigated the mechanism of action of six previously reported Mpro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12, using a consortium of techniques including FRET-based enzymatic assay, thermal shift assay, native mass spectrometry, cellular antiviral assays, and molecular dynamics simulations. Collectively, the results showed that the inhibition of Mpro by these six compounds is nonspecific and that the inhibition is abolished or greatly reduced with the addition of reducing reagent 1,4-dithiothreitol (DTT). Without DTT, these six compounds inhibit not only Mpro but also a panel of viral cysteine proteases including SARS-CoV-2 papain-like protease and 2Apro and 3Cpro from enterovirus A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the viral replication of EV-A71 or EV-D68, suggesting that the enzymatic inhibition potency IC50 values obtained in the absence of DTT cannot be used to faithfully predict their cellular antiviral activity. Overall, we provide compelling evidence suggesting that these six compounds are nonspecific SARS-CoV-2 Mpro inhibitors and urge the scientific community to be stringent with hit validation.

17.
bioRxiv ; 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-807738

ABSTRACT

There is an urgent need for vaccines and antiviral drugs to combat the COVID-19 pandemic. Encouraging progress has been made in developing antivirals targeting SARS-CoV-2, the etiological agent of COVID-19. Among the drug targets being investigated, the viral main protease (M pro ) is one of the most extensively studied drug targets. M pro is a cysteine protease that hydrolyzes the viral polyprotein at more than 11 sites and it is highly conserved among coronaviruses. In addition, M pro has a unique substrate preference for glutamine in the P1 position. Taken together, it appears that M pro inhibitors can achieve both broad-spectrum antiviral activity and a high selectivity index. Structurally diverse compounds have been reported as M pro inhibitors, with several of which also showed antiviral activity in cell culture. In this study, we investigated the mechanism of action of six previously reported M pro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12 using a consortium of techniques including FRET-based enzymatic assay, thermal shift assay, native mass spectrometry, cellular antiviral assays, and molecular dynamics simulations. Collectively, the results showed that the inhibition of M pro by these six compounds is non-specific and the inhibition is abolished or greatly reduced with the addition of reducing reagent DTT. In the absence of DTT, these six compounds not only inhibit M pro , but also a panel of viral cysteine proteases including SARS-CoV-2 papain-like protease, the 2A pro and 3C pro from enterovirus A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the viral replication of EV-A71 or EV-D68, suggesting that the enzymatic inhibition potency IC 50 values obtained in the absence of DTT cannot be used to faithfully predict their cellular antiviral activity. Overall, we provide compelling evidence suggesting that ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12 are non-specific SARS-CoV-2 M pro inhibitors, and urge the scientific community to be stringent with hit validation.

18.
Cell Res ; 30(8): 678-692, 2020 08.
Article in English | MEDLINE | ID: covidwho-599672

ABSTRACT

A new coronavirus SARS-CoV-2, also called novel coronavirus 2019 (2019-nCoV), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.35% as of May 26, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known substrate-based peptidomimetic Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three protomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Coronavirus Infections/metabolism , Glycoproteins/pharmacology , Pneumonia, Viral/metabolism , Proline/analogs & derivatives , Pyrrolidines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19 , Caco-2 Cells , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Discovery/methods , Humans , Inhibitory Concentration 50 , Kinetics , Pandemics , Pneumonia, Viral/virology , Proline/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2 , Sulfonic Acids , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL